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Abstract 

Infinite series of Wick powers of the free, massive Bose field are analysed in terms of 
test function spaces of type S for arbitrary space dimension. By direct estimates of the 
smeared phase space integrals sufficiency conditions for the existence of the vacuum 
expectation values are derived. These conditions are shown to be precise. The field- 
operators are defined on a dense invariant domain in Fock space, where they satisfy 
the Wightman axioms with the possible exception of locality. Localisable and non- 
localisable fields are dealt within the same frame. The behaviour of spectral functions 
and the strength of singularities are discussed. 

1.  Introduction 

There are not  many constructive examples of  quantised fields which 
satisfy the Wightman  axioms. A thoroughly investigated class are the Wick 
powers :~' :(g) of  the Kle in-Gordon field q~(g) (Wightman & Garding, 1964). 
These powers :~r:(g) are obtained by shifting all annihilation operators in 
~-=1  ~(g~) to the right, extending this multilinear functional to functions 
h(xa,. . . ,  x,), and performing the limit h(x i , . . . ,  xr) -+ 1-[~'=2 3(xl - x l)g(xl) .  
I f  the spatial par t  o f  the space-time cont inuum has a dimension greater 
than one, the Wick powers behave at the light-cone like negative powers 
(i.e., their vacuum expectation values have singularities of  this kind), and 
all Wick polynomials of  arbitrary degree can be defined as operator-valued 
functionals in the Schwartz space St ' .  The straightforward generalisations, 
the infinite series o f  Wick powers 

x(g)  = ~.  :~r:(g) (1.1) 
r = 0  

however, have essential or even nonlocalisable singularities and can thus 
not  be elements of  St ' .  Only in the two-dimensional space-time cont inuum 
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the possibility of power series in 5 a' is not excluded, since in this case the 
Wick powers have only logarithmic singularities. The requirement of not 
so customary test function spaces seems to have prevented the systematic 
discussion of the fields (1.1) in higher dimensions hitherto, although already 
the simplest field-theoretic models demand for their solution transcendental 
functions of the free field. Since there is also an increasing interest in non- 
polynomial Lagrangian theories (Salam, 1969a), a detailed discussion 
of the infinite series x(g) in the spirit of Wightman should not be 
postponed. 

The lines one has to follow are obvious: one has to restrict the functional 
domain of definition of the fields to subspaces of S a. The first step in that 
direction was made long ago (Gtittinger, 1958). There it was proposed to 
take the test functions in position space out of ~e (the space of analytic 
functions) and to accept the resulting nonlocal features as an inherent 
structure of nonrenormalisable theories. It was Schroer (1964) who at first 
observed that there is a large class of nonrenormalisable fields which are 
still localisable (i.e., they can be smeared with test functions of compact 
support in position space). A general functional-theoretic frame for all 
localisable fields was given by Jaffe (1966, 1967, 1968). The test function 
spaces he introduced are characterised by an indicator function, i.e., by 
infinitely many parameters. For our investigation of the power series we 
found it convenient to use a family of test function spaces which are indexed 
by one or two constants only, since the growth of power series is commonly 
described by the two numbers order and type also. The appropriate spaces 
5a~, a (for position space) and 5r A (for momentum space) were introduced 
by Gelfand & Schilov (1962) and belong to the so-called spaces of type S. 
The family 5 a~'' A interpolates the region between ~9 ~ and ~Y, and 5a~, A 
between 5 a and 9 .  They include also the case where the dual spaces contain 
nonlocalisable functions (that is, for ~ < 1). This is desirable, because the 
set of localisable fields is too small for all applications. The basic definitions 
and properties of the spaces of type S are stated in Appendix 1. There are 
also proven two new theorems for functionals in S~"', concerning the 
transformation to difference-variables and the connection with boundary 
values of analytic functions. 

The main purpose of this paper is to determine for each e ~ [0, oo) the 
growth of the coefficients d, in (1.1), which is admissible in order that the 
power series belong to 6 a ' ' .  Since field-theoretic models are studied in the 
literature in various space dimensions, and since it does not complicate our 
calculations, we work with arbitrary space dimension (which is, for practical 
reasons, denoted by ~ + 1). For x = 0 (two-dimensional space-time) the 
power series which belong to Y '  were investigated by Jaffe (1965a). Shifting 
the convergence problem of functionals to that of analytic functions it is 
shown (Jaffe, 1965a) that just the series of order unity have limits in S a'. 
We shall deal with the convergence problem without reference to analytic 
functions and are thus able to treat the nonlocalisable fields on the same 
footing as the localisable ones. We concentrate mainly on the case h: ~> 1, 
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while the discussion of K = 0 in terms of our method is outlined in Appen- 
dix 2. 

In Section 2 suff• conctitions for the convergence of the two-point 
function are set up. It is also demonstrated that these conditions are precise 
within the accuracy given by the family of test function spaces 5a% 

Section 3 shows that the aforementioned conditions also ensure the 
existence of the n-point functions. 

The field operators are defined in Section 4 on a dense invariant domain 
in Fock space, where they satisfy the Wightman axioms. Power series of 
order smaller than two and of order two and type zero are shown to enlarge 
the Borchers class of the free field. 

The results thus far can also be considered in another way. Given a field 
x(g) ,  the investigations of Sections 2-4 determine the maximal functional 
domain of definition. That this is not purely of academic interest is shown 
in Section 5. Once one has at hand the functional domain one is able to 
make statements on the growth of the spectral functions and the singularities 
at the light-cone. For  these conclusions, which belong to the dynamics of 
a theory, the functional-theoretic results of Appendix 1 are needed. A look 
at simple models shows that the sufficiently precise characterised functional 
domain (one has to use an at least twice-indexed family of spaces such as 
5a~, A) may depend on the coupling constant. Thus the determination of 
the appropriate test function space for a given field is also part of the 
dynamics and should not be anticipated by the inclusion into a general set 
of axioms. 

In Section 6 an operator analysis is outlined which may be of use for 
the study of models and nonpolynomial Lagrangians. 

Working henceforth in K + 1 space dimensions we develop some notation 
for later use. 

x:  = (x  ~ , x l , . . . ,  x~+l ) ,  x:  = ( x ~ , . . . ,  x ~+~) 

x y  = x~ y ~ - xy, dx  = dx  ~  dx  TM, dx  = dx 1 ' ' '  dx  ~ +1 

iA( +)(x) = (2~r) -(~+~ f exp ( - i x p )  O(po) ~(p2 _ m 2) dp 

g(x)  = (27r) -(~+3)/2 f exp ( - i x p ) g ( p )  dp 

2. The Two-Point  Function 

For technical reasons we shall not discuss directly the convergence of 
the series (1.1) in some operator topology, but prefer to deal with the 
vacuum expectation values. The essential advantage of the latter is their 
translation invariance. 

We start with the two-point function 

~ ( 2 ~ ( g ~ ,  g2) = ( ~ ,  x + ( g i )  x(g2) ~) 

~[41 2 r = t -~ !  A (gl,g2) (2.1) 
r=0 
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where 

g2) = f f g,*(x) (iA(+'(x - Y))" g2(Y) dx dy Ar(gl, 

r r d~  

\l=l / l=l 'Fl 

and p0  = ~/(ptZ + mE). ff~/2 are the Fourier transforms of  gl/2 and /2 
denotes the no-particle state. We suppose now that the test functions fit 
be in 6a~(R ~+z) (cf. Gelfand & Schilow, 1962 and Appendix 1). In a fixed 
coordinate system it would be sufficient to require the ~, to be in ~ only 
with respect to the energy variable P0, but it is preferable to work with 
Lorentz invariant test function spaces. According to (A1.1) and (A1.3) we 
have 

I p ~ ~l(p) ~2(p) 1 ~< CA LL ~ 
Thus 

[Ar(g,,g2)[ <~ Cl C f  ALLL~'I(r,L) 

where we have used the abbreviation 

/ ( r , L ,  = f ""  f (l=~l p l O ) - L ~  dpl ( 2 . 3 )  
,=1 2p? 

Integration over the angles and transition to the variables t i - -~= lp ~  ~ 
i = 1 . . . .  , r, leads to 

I(r,L) = Cr f t~m . . .  t2f--mt~L ~=2 [(tt -- h-l)2-- m2] 'K-1)/2 
rm ( r - l ) m  m 

• ( t l  2 - -  m2)(~-l)/2dtr.., dtl 
Constants as C, C~ may have different values in different lines. 

In the sequel we treat only the case K > 1, discussing the case ~c = 0 in 
Appendix 2. Since I]~=z ( h -  h_l)tl has its maximum at (t~/r) ~ for t, 
fixed, we get 

I(r,L) < C~r -(~-nr- I _(t; L+~-ldt~ 
(r - 1) ! 

rm 
In order to guarantee the existence of the integral on the right-hand side 
we have to require that L be an integer-valued function of r so that 
L(r) > Kr. Then 

r r --L 

I(r, L) << C ~ m -L (~- 1)! (L - Kr)" (2.4) 

We use the freedom in the choice of L(r) to make the expression ALL L~ I(r,L) 
as small as possible. 
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of  the series (1.1) satisfies 
2 

p{d~} < 1 + (c~ - 1) K 

For  e = 1 a sufficient condit ion is 

laY, le/r! <. cr(r)', ,fir) > O, 

This is equivalent to 
p{dr} = 2 

combined  with 
1 - -  d ~ 

- - l i m r - '  = 0  (2.9) rr{d,} = ep ,_~  r 

For  0 < c~ < 1 let us choose L(r)  to be rg, 1 </3  < 1/e. The  major isa t ion 
of  the two-point  function then reads 

2d2 
[ r[ /-~ r _ r0Ar#  (e~_l)r/J (2.10) ['/K'~2)(gt,g2)] ~< Cl - - ~ 2  . . . . .  
r! 

r=0 

A suffieient condit ion for  convergence is given if there is a cons tant /3 ' ,  
1 < /3 '  < 1/~, and an r0, such that  

[dr[Z/r! <<. exp (r/3'), r > r 0 (2.11) 

The  coefficients o f  the power  series are in this case allowed to increase 
strongly with r. 

I f  ~ = 0, then the sequence ALLZ~I(r ,L)<~ A Z C ~ m - L r  - z  decreases the 
faster, the stronger the sequence L(r)  increases. Thus  A~(gbgz)  tends 
arbitrari ly fast  to zero for  r -+ % i.e., it terminates  at  a certain r0. There 
is no condit ion on the coefficients dr for  convergence. 

(2.7) 

lim a(r) = 0 (2.8) 
r --~ oo 

For  e >/1 we set 
L(r)  = 7r, 7 > • 

We obtain  in this way the following estimate for  y~(2) 

I'~(Z)(gl,g2)[ < C1 -~. ~z  ,1 , (2.5) 
r=O 

F r o m  this, sufficiency conditions for  the convergence of  ~F "(z) can be 
deduced. 

Let  be c~ > 1. I f  there is a 7 '  > x and an r0, so tha t  

Idrl2/rt < r -(=-l)w'r, r > ro (2.6) 

then (2.5) converges for  all A and g/'(2)(gl,g2) exists for  all gl/z ~ SP~ �9 (2.6) 
is equivalent to the requirement  that  the order  

- -  r log  r 
p{dr} = r-,oolim - l o g  Idol~r! 
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By means of (A1.4) we pass to the position space, and we summarise 
the foregoing results. 

Theorem 1 
Let the spatial part of space-time have the dimension K + 1, ,c> 1, 

sufficient for the convergence of the two-point function of the field 
x(g) = ~r d~/r!:~:(g) for all test functions in 

the space 

ae  (~ = co) 

o'~ ~, 1 < ~ < o o  

5~ 

5r  c~< 1 

5oo =~_~e 

. . .  is the condition 

There is an r0, so that dr = 0 for all r > r0. 

2 
p{ar} < 

1 + ( ~ -  1)K" 

p{dr) = 2 and o-{d,} = 0. 

There is an ro and a 3, 1 </3 < 1/cq so that 
[drJ2/r] <. exp (r~), r > r0 

dr is an arbitrary sequence. 

p(dr) and o'{dr) denote the order and the type of the power series x(g). 
Through Theorem 1 we have associated a condition with each space S a~, 

c~ ~ [0, ~o). Henceforth, we shall refer to this condition briefly as 'condition 

The functionals in Sel" are just the limiting case of localisable generalised 
functions. In the slightly larger space S ~l',ao are already partially non- 
localisable quantities, i.e., functionals which are singular in a four- 
dimensional region in space-time. If  one deals more carefully with the 
constants C1, C2 . . . .  , than we have done above, one derives a sufficient 
condition for convergence in S e*'' ao. 

Sufficient for the convergence of the two-point function for all test 
functions in S g~' ,~o is p{dr} = 2 and ~{d~} < b/Ao ~, where 

b = (4rr)~+l/2eoa(K)x~, 

oJ00 denoting the area of the unit sphere in ,c + 1 dimensions. 
Let us now investigate the precision of condition ~. For this purpose 

we test $r with the special function 

(exp{--(a/2) [tp~ + v/(Ipl 2 + m~)/2]*/~'}, Ip~ > m/2; 
gl/2(p) = g,(p) = {an arbitrary, smooth, infinitely differentiable con- 

(tinuation for [p~ < m/2 

g~(p) satisfies relation (A1.2) and is thus in S~=(R~+2). Observing that 

[(1=~ p,)2 + m2]'/z ~<l~ (pt2 § m2) '/2 
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we have 

[ ( ' ) ]  
As is shown in Appendix 3 a somewhat complicated estimation leads to 
the incomplete/ '-integral 

~0 

>1 Cl Cf(r!)-~ a -~r~ f exp (-s)s  ~r~-x ds (2.12) Ar(gs, g~) 
a[r(m+~)]t 1~ 

where c is arbitrary, greater than zero, An approximation formula (Magnus 
& Oberhettinger, 1948) gives for c~ ~> I (and a < 1) 

A"(gs, g~) >~ C, M(a)" r r (2.I3) 

where M(a) -~ ~ for a -~ 0. 
For  0 < c~ < 1 we obtain 

A~(g~, g~) > C~ ~ ( a )  ~ exp (-br ~ )  (2.14) 

where ~t(a) -+ ~ ,  for a -+ 0. 
From (2.13) and (2.14) follows immediately the following theorem. 

Theorem 2 
The two-point function (2.2) diverges for  (at least) one test function in 

the space if 

5 ~ (c~ = ao) d, # 0 for infinitely many r. 

50~, 1 < ~ < co There is an M so that 

M ' r  -(~-l)~" <~ Id,12/r!, for infinitely many r 

S e~, 0 < e < 1 There is an M and a b, so that 

M" exp (br TM) < I d~lZ/r !, for infinitely many r 

Corollary 
Condition r is precise in the sense that not  all series satisfying this 

condition for a fixed ~ also possess an existing two-point function in a 
greater space 50~o, ~ < ~0. 

3. The n-Point Function 

According to Jaffe (I965a) we have for the vacuum expectation values 
of  n fields 

~ d ( ~ )  
X(o(g) = 7 .  :r i---- 1 . . . . .  n 

r=O 
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the expansion 

Yg/'(n)(g 1 . . . .  , g,)  = (O, X(n(gl) " '"  X(")(gn) g2) 

= ~: s~. f . . .  f(iA,+,(x,_x2))r,,...• d(t). . "d(,) 

rlz! "" "r,_i,,! rlj~ 
l<~i<j<~n 

• (iA(+)(x,_a -- x,)f"-'," g l ( xO""  g,(x,) d x , . . ,  dx, 
d(1).., d(n) 

= : ~  ~sl i i ( , s ,  A~(g~,...,g~) 
R~>a 

(3.0 
where rij = rji, ru = 0, S~ = ~ =  1 ru,  R = (ri 2. rl 3""  r . -L . )  and R ! = rl 2 ! rl 3 ! 
. . . r , _L , ! .  

Equa t ion  (3.1) presents a simplified version of  a per turba t ion  series. In  
contras t  to ordinary  per turba t ion  theory  the lines in a graphical  repre- 
sentat ion o f  each per turba t ion  te rm would stand for  a A(+)-function and 
the summat ion  would be taken over  the number  of  lines (and not  over  the 
number  of  vertices). We now investigate the convergence of  the summed-up  
per turba t ion  series and  for  clarity combine  the necessary steps into lemmata .  
In  the sequel we shall also make  use of  the notat ions  

n--1 
R i - -  ~ ru  and []R/I = R = Y. Ri (3.2) j=i+l i=1 

Lemma 1 
Let~g~ . . . .  , g .  be in 5 a~, then 

l n--I 
e l  ~ f i  t~rkJ drgj~/ ~.(~--l)yrkj 

k=l j=k+l 
IA~(g,,. . . ,g,)[ < 

n--1 f i  
k=! j=k+l 

1 < / 3 <  1/~, f o r 0  < ~ <  1 

Proof." Passing to difference variables according to Theo rem A. 1 we get 

zJ~(gl . . . . .  go) = zJ~(h) 

= C1 C2 a f " "  f h ( - q ~ , . . . , - q , _ 0  

where 

~,> ~c, for  1 ~< ~ 

rf J dpij l 

I-I l ~ < j ~ ,  z=l 2P~~ 

s (  ) 
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and 
k ~ r~j 

qg = Z Z PlJI 
i=1 j=k+l  /=1 

Lemma A1 shows that  ~ is in ~9~ and satisfies theinequality (A 1.5). Denot ing 
n--l 

H =  H(LI , . . . ,L ._ , )  = I~I A~ ~LLk= 
k=l 

and observing 

we have 

ri j 
qkO >~ qO, Z o P i j l  

j=k+l l=l 

n-1 n rkj dpkf l  

[A~(h ) j~ .~C1C2RHI~  f . . . f  q~,-L~ H H2p~ 
k=l Rt~ j=k+l  l=l  

n-1 
= C 1C2RH ]~ I(Rk, Lk) [cf. (2.3)] 

k=l 

n -- l l~Rk--Lk ALk  lLk  c~ 
a'k ~'~k JL'k 

<~ C1 ~ C~k,~m -zk 
k-, (R k - 1 ) ! ( r  k - Rk•) 

i f L  k = L(kR~) > R~K. 
For  ~ >~ 1 we choose L~(Rk) = ~,R~, ~/> K and obtain 

n--I 

lARd(h)[ ~. el ]~ f l  c'"JA~J,r(k~ .- ')r '~j ~2,k 
k=l j=k+l  

where (A1.7) was taken into account. 
For  0 < ~ < 1 we choose Lk(Rk) = Rk ~, 1 </3 < l /a ,  and observing 

(rl + r2) ~ < (2rl) t3 + (2r2) ~ we arrive at 

1Aria(h)] < C1 n~ f i  Crk,~A~kflr(k~_l)rk fl 
k=l j=k+l  

Condit ion ~ o f  Theorem 1 is formulated by means of  a positive sequence 
m~(r), depending on 

( r  - ( ~ - l ) y ' r ,  K < ~/ ,  for 1 < 

m~(r) = tcr(r)', l~m= cr(r) = O, for ~ = l 

\exp(rY) ,  1 < fl' < I /a ,  for 0 < ~ < 1 

In  the estimations leading to Theorem 1 we have used the sequence 

I~,r, K < ~,, 1 < 
L~(r) = ~rf3 ' 1 < fl < 1/a, 0 < c~ < 1 



64 A. RIECKERS 

Lemma 2 
Assume the sequences {d~)}, 1 < i < n, to satisfy condition e. Then 

<"-1 
m~(rifl r~j, ~ij 

~=1 j=~+l  

for positive constants A~j. 
Proof." Simple estimates--the factorials are treated by means of Stirling's 
formula--show that 

(ri + r2) ! rn~(r~ + r2) < rl ! m,,(rl) Air "('0 r2 ! m~(rz) a b  ('2) 

Thus 

Ids~ 'l < ~ [r~! m~(r,~) A~J('O11/2 
J = l  

In the product over i, each factor appears twice, therefore 
it--1 

12I " ) <  r I  I~I r, slm~(r,j)A~J 
i=1 ds~ i= l  j = l + l  

The combination of Lemma 1 and Lemma 2 provides an estimate of the 

~  foo , oo, p od o, or convergent series. Theorem 

A.1 shows that the convergence in the difference variables is equivalent to 
the convergence in the original variables. Thus we have arrived at the 
tbllowing statement. 

Theorem 3 
Assume the power series X(~)(g) satisfy condition c~. Then all vacuum 

expectation values of these fields exist as functionals on 6a% 
Since we have shown absolute convergence, we know that the multiple 

series corresponding to the n-point functions converge in each order of 
summation. Therefore, we may approximate the Wightman functions of 
the power series by those of Wick polynomials, which satisfy all axioms, 
In this way we could prove the Wightman axioms for the vacuum expecta- 
tion values of the X")(g), and by the reconstruction theorem (Streater & 
Wightman, 1964) for the fields themselves. Instead of this procedure we 
prefer to construct the fields directly as operators in the Fock space and 
then to discuss their general properties. 

4. The FieM Operators 

Let P(q~) denote a polynomial in the free Bose field (i.e., a multilinear 
functional, not a Wick polynomial, which is a linear functional). We define 
a dense domain in the Fock space for each ~ ~ [0, co) as follows 

Do~: = {P(~)s test functions in 27 '~} (4.I) 
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If {d~ i)} satisfies condi t ion . ,  then the sequence of partial sums 
N 

X(~)(g) = E (d~~ :~r:(g) 
r=0 

has a strong limit on Do~: For  each F ~  Do ~ the norm distance squared 
[l(X(~(g) - X(~(g))FII 2 consists of four terms which are in structure partial 
sums of (3. I), since the free field ~(g) itself satisfies condition ~ for each 

~ [0, ~). Theorem 3 shows that the limits N1, N2 -+ ~o exist. They cancel 
each other and X(~)(g)F is a Cauchy sequence and has, by means of the 
completeness of the Fock space, a strong limit. 

In order to get an invariant domain let us consider 

D,~: = (P(x(~))s X (~) satisfying condition , ,  test functions in ;T ~} 
(4.2). 

Since }(g) is a special X(*)(g), DI" ~ Do t holds. By the same arguments as 
above one concludes that each x(g) satisfying condition c~ exists as a strong 
limit on D1 ~, and by definition 

x(g)Dl"  c D1 ~ 

For the discussion of L0rentz invariance we introduce the usual repre- 
sentation of the inhomogeneous Lorentz group in the test function space, 
which reads, for example, in the momentum space representation 

U(A, a) ~(p) = exp (iap) ~(A -1 p) 

The defining relation (AI.1) for if(p) to be in S~,, A(R ~+2) is not invariant 
under U(A,a), since the constant A is affected by a Lorentz transformation. 
But in virtue of (A1.3) 5a~ is invariant, and since U(A,0) commutes with 
the Fourier transformation, 5 a~ is invariant also. With U(A, a) is associated 
a (highly reducible) representation of the inhomogeneous Lorentz group 
in the Fock space 

~(A, a): = ~ U(A,a) | ... | U(A,a) 
n=0 n 

where the empty product equals the unit operator (invariant no-particle 
state). DI ~ is thus invariant against Lorentz transformations 

U(A, a) DI ~ = Ol ~ 

Because of 

[U-X(A, a):q~r:] (g) = :q~r:(U(A, a)g) = ~(A, a):c~r:(g) ~7-1(A, a) 

we obtain the correct relativistic transformation law for the power series 

[U-I(A, a) X] (g) = LT(A, a) x(g) ~-1( A, a) (4.3) 

The spectral condition for the energy-momentum operator corresponding 
to (I(A,a) is trivially satisfied. 

5 
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As for locality, let us consider the commutator  

~ d(1) ,4(2) 
[X(l)(gl), X(2)(g2)]_ = "r+q ~r+i2 • 

q,i2=0r=o r]il!i2! 

x f f [(iA'+)(x I -- x2))' -- (iA(+)(x2 -- x , ) f ]  x 

X :(~il(Xl) ~=(x2):gl(xa)gz(x2) dxl dx2 (4.4) 

[...] is an odd Lorentz invariant distribution and thus vanishes for space- 
like separations. Therefore, if the fields X(t)(g) are localisable (i.e., if they 
are defined on test functions of  compact support) then they are local and 
relatively local to each other. 

The asymptotic condition is discussed in accordance with Jost (1965). 
For  this purpose we introduce the field 

Xas(g): = X(gas) 

where g,~ is in momentum space equal to ~o(p)h(p2), and h(s) is a test 
function such that in a neighbourhood of s = m 2, h(s) = 1 ,  and h(s) = 0 for 
I s -  mZt > m2/2. This auxiliary function h has the effect that all Wick 
powers of degree greater than one are annihilated. I f  we set in the series 
of  x(g) the constant do equal to zero, then X,~(g) = dl 4(g) and the asymp- 
totic condition as well as the asymptotic completeness are satisfied. 

Since for each power series there is an ~ e [0, oo), so that condition 
of Theorem 1 is satisfied, we have 

Theorem 4 
For each power series x(g) there exists a functional domain 5 :~ and a 

dense, invariant operator domain D1 ~ in the Fock space of the free field 
~(g), where it is well-defined as an operator-valued functional and satisfies 
all Wightman axioms, with the possible exception of locality. 

Fields which are functionals in 5::", 1 < 0~, are localisable in the ordinary 
sense, because in the corresponding test function spaces there are functions 
of  compact support. There are, moreover, several equivalent methods to 
define the support of a functional in 5 #1' (Martineau, 1963; Khoruzhij, 
1966; Constantinescu, 1969), and we consider these fields as localisable, 
too. To the set of  localisable power series belongs also the free field. Hence 
all g(g) which are elements of 5:1'  are in the Borchers class (Borchers, 1960) 
of the free field. Recalling condition = for ~ = 1 we have the following 
statement. 

Theorem 5 
All power series of order smaller than two and of order two and type 

zero are in the Borchers class of  the free field. This holds for arbitrary space 
dimensions greater than one. 
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If x(g) is of order two and of finite type, it belongs, seemingly, to a space 
5o~, a'. (We have in Section 2 only shown that the two-point function lies 
in 5 el '  A'.) These partially local fields are sometimes considered as belonging 
to theories with a built-in elementary length. In our description such a 
fundamental length would be connected with the constant A, which itself 
may depend on the coupling constant. 

In order to exhaust the Borchers class of the free field one has only to 
include infinite series with Lorentz invariant derivatives into the considera- 
tions and to investigate which of them be localisable. That no other fields 
are to be taken into account is a consequence of Epstein's theorem (Epstein, 
1963). 

5. Dynamical Properties 
In the foregoing section we were primarily concerned with those general 

properties of the power series X(g), which allow us to call them fields in 
the sense of Wightman. The results of Section 2 and Section 3, however, 
enable us to determine the maximal functional domain for an arbitrary x(g) 
within the accuracy, given by the family of test function spaces 5 r Such 
a programme was already discussed by Schroer (1964) in connection with 
infinite series of the zero-mass field, but without specifying the test function 
spaces. We now show how such considerations may lead to further state- 
ments on the fields, statements which belong to the dynamical part of a 
theory. 

The expression (2.1) for the two-point function can be written in the form 
(assuming do to be equal to zero) 

"ff/'(2)(gl,g2)= 2 [dr[2 f e,(q2) ~, ,,(q) g2(q) dq (5.1) 

where the phase-space integral of r identical particles cr,(q 2) is given by 

( ' )  j" "" I 7-, ,,, ,-,fl 
The ffr(q 2) are  Lorentz invariant distributions which for r > 1 are equivalent 
to discontinuous, positive functions. Defining 

N 
Id.I 2 

oN(q 2) = ~.(q2) 
r = 2  

we know pN(q 2) < pN+l(q 2) and 

f p~v(qZ)~,(q)~(q)dq < ~//-~2)(g, g) 

for all N. Thus we are able to apply the Lebesgue convergence theorem 
and to interchange summation and integration in (5.!), obtaining 

= f p(q2) ~,(q)g(q) dq (5.2) -/r g) 
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The series p(q2) = ~rm=l (idr 12/r !)o.r(q2) converges for those values of q, for 
which not all test functions of the space under consideration vanish. If  the 

are in ~ ,  p(q2) is defined for finite q's only, i.e., there is no function 
describing the behaviour of p(q 2) for large values ofq 2. 

Let us assume x(g) satisfies condition ~. According to (A1.2) g(q) e ~9~ 
implies I g(q) I < Cexp ( -a  Iq011/=). Since the integral of (5.2) is finite, we know 

p(q2) < exp [a(q2) 1/2c~] 

for all a > 0. Moreover, if the sequence of the series coefficients {dr} satisfies 
a condition of Theorem 2 for an ~', ~ < ~', then (5.2) diverges for some 
test functions in 5P~,. Thus 

exp [b(q2) l/2~1 ~< p(q2) 

for all b > 0 and ~' </3. This provides the following theorem on infinite 
series of phase-space integrals for space dimensions greater than one (,~ > 0). 

Theorem 6 
Assume the positive sequence {at} to satisfy one of the following con- 

ditions 

I/(~:'--l)K<~p{a,}<l/(o~--l)K, 1 < = < = ' < / ?  

p{a,.} = co, ( i  = ~ < 5 )  

exp (r a/~') ~ G < exp (r a/~ 3, 0 < c~ < ~" < c~' </3 ~< 1, r > r0 

then the infinite series of phase-space integrals is estimated for large values 
ofq z by 

exp [b(q2) 1/2/3] ~ ~ ar c~r(q a) < exp [a(q2) 1/2~] (5.3) 
r=l 

for arbitrary a, b > 0. 
In order to get the usual spectral representation of the two-point function, 

one has to observe that p(q2) is localised on the forward-cone. Such distribu- 
tions can be written (Rieckers & Gtittinger, 1968) as 

CO 

f p(/z2) f O(qo) 8(it/2 -- q2) gl *(q)g2(q) dq dt x2 ff/'(2)(gt, gz) 
o 

or in position space 

"ff/'{Z'(g,,g2) = f pO*a) f f gl*(x)iA'+)(x - y, tz2)ga(y)dxdydl xz 
o 

These spectral representations are well defined, there is no need for a 
weighting function to compensate the growth of p(/~2),/xa _+ +oo. From the 
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above discussion of the two-point function one gets useful information for 
the time-ordered two-point function 

gl*(x) A I ( x  - y)  g2(Y) dx dy 
r=l 

oa 

0 

which is more difficult to treat. The spectral function p'(/z 2) is a generalised 
function of an unusual kind, but related to p(ix z) in a specific manner. The 
detailed investigation of this problem is deferred to another occasion. 

In contrast to the growth of the spectral functions, the singular behaviour 
at the light-cone can only be studied for localisable power series. As is 
shown in Theorem A2, the local vacuum expectation values are boundary 
values of analytic functions. Approaching the boundary of holomorphy the 
analytic functions tend to infinity if the real part of the complex vector 
lies on the light-cone. The degree of singularity which may occur is 
determined by the test function space. 

Theorem 7 

Let the power series X(~)(g), i = 1, ..., n, satisfy condition ~, a >/1. Then 
the corresponding vacuum expectation values transformed to difference 
variables 

W(n-1 ) (h (n - l ) )  = (U21 U10 ~ ( n ) )  (h ( . - l ) )  = '~ f (n) (g l  . . . . .  g") 

are boundary values of functions 

w(n-1) (~  - iT) = w(n -1 ) (~ l - - i  Y/ l , ' '  ", ~n-1 - -  /"~n--1) 

which are analytic in R (~c+2)(n-l) - -  iF, 1-' being the direct product of the 
forward-cones, i.e., 

W("-l)(h ("-1)) = l i m  f W("-x)(~ - i~)h(n-1)(~)d~ 

For each compact set K c / "  there is a polynomial PK(~) and a constant 
C > 0, so that 

Iw(n- l ) (~- i~Tt ) l<~ex(Oexp[c t lm-~ ' ) ] ,  0 < t < l  (5.4) 

For c~ = 1 this means that the singular behaviour may be arbitrarily strong. 
Having the explicit expression (3.1) for r162 we are able to write down 

the series expansion of W ( " - I ) ( ~ -  i~1) , too. Since W("-x)(~- i~/) is the 
Laplace transform of the I~ ("-l), and the Laplace transformation commutes 
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for generalised functions with infinite summation, we know 

~ ,~,)....~.) f 
f W(,-1)(~_ i~7)h(,-1)(~)d~= ~s~ ~'s, ~(AaR) • 

R~>0 R~" 

• (~ -- i~]) hr :) ds e 

where Ad R is the Fourier transform of AdR [cf. (3.1)]. If  we denote 

- i~)k) = (2~r) -~+1) f exp [-i((k - bTk)P] O(Po) ~(p2 _ m 2) dp iA(+)(r 

then 
se(d~) (r - ~) = A~.(r - ~) 

_ ~q [iA(+)(~, + - . .  + ~j-1 -- i(~Ti + " "  + ~j'-,))]"'J 

Since, according to (A1.9), the Laplace transforms differ from the Fourier 
transforms only by a modification of the test function, absolute convergence 
for the former implies that for the latter, and we may again apply the 
Lebesgue theorem to obtain 

f W(._I)(~ _ i~7)h(._l)(~)d ~ = ~'s~ ~s. Ada(~ _ i~7) h(._l)(~)d ~ 
R! 

from which follows the equality of the factors beside h (n-~). Thus we may 
state: 

Theorem 8 

If  the sequences {d~i)}, i = 1, ..., n, satisfy condition ~, c~ >~ 1, then the 
multiple series 

1--[ [iA(+)(r + " "  + r - i (~  + . . .  + ~_m))]r,J 
R~>0 l<_i<j<~n 

converges absolutely in R (~+2)" - i f '  to a function, which is analytic in this 
region and satisfies the inequality (5.4). 

Remark: The convergence in Theorem 8 can be shown to be uniform in 
each compact subset of R ~+2)" - if'. 

By means of Theorem 8 the convergence of functionals is transformed 
to the convergence of analytic functions. The correspondence between these 
two kinds of convergence was studied by Jaffe in more general terms (Jaffe, 
1965b, 1968) and forms the basis for his investigation of power series in 
two dimensions. The advantage of our method is that it works for nonlocal 
fields also. 

6. Operator-Analysis 

We have now at hand a set of power series, defined as operator-valued 
functionals. This set is even larger than the set of convergent numerical 
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power series, since in the functional case for each growth of the coefficients 
suitable domains of definition can be set up. It is not difficult to show that 
there hold analogous formulae as in the numerical analysis. 

If, for example, {d,) satisfies condition c~, then {rd,} does also (for the 
same ~), and the differentiation rule for Wick powers leads to 

a ~ ,  d, ~' , l ~  ( 
Ox~ x(g)= /--' (r ~l)!  = 1 ff~x~d?: g) (6.1) 

Also, the multiplication law for power series 

1/r  
:X(1) X(2':(g)= r~=o r]ls~=o (~) d~l) dr(2)s):~r:(g ) (6.2) 

is easily verified on those domains, where the right-hand side converges. 
Thus, we have a unique product at the same point of two field-operators, 
which possess essential, or even nonlocalisable, singularities. 

This operator-analysis can be applied to field-theoretic models, where 
the solutions of the field equations are given by transcendental functions 
of the free field. For the derivative-coupling between a Fermi field ~b and 
a Bose field 

= F ( 4 ) :  

the solution reads 
X = :exp [i3av(~)] ~b: 

X is local only if F(t) is entire and satisfies [F[ < ct 2. Choosing various 
functions F all types of local and nonlocal fields are created. For F(t) = t 2 
one obtains a partially local field, which has as appropriate functional 
domain a space 5 p~, A, A depending on the coupling constant A (Rieckers, 
1969). 

Transcendental functions of the free field occur also in those interactions 
which arise from chiral-invariance arguments. Examples are 

= q, 

where U may be one of the following functions (Giirsey, 1968) 

1. U = exp (2/f75 xq0 
1 +/fY5 x ~  2. U =  
1 - zf~'5 x ~  

3. U = ~/(1 - 4f 2 ~2) + 2zf~5 xtp 

q) denoting the pion iso-triplet. 
At the present time much effort is directed towards developing new mathe- 

matical methods for dealing with these nonpolynomial interactions (Salam, 
1969a; Efimov, 1969a, b; Lee & Zumino, 1969; Salam & Strathedee, 1969). 
GeneraIly, the time-ordered vacuum expectation values are attacked directly, 
but these quantities are uniquely defined only for those test functions which 
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vanish sufficiently often if some coordinates coincide. In this context regular- 
isation is the construction of an extension to the whole test function space. 
The functional-theoretic background of  the extension procedure is fully 
clarified in the case of algebraic singularities, i.e., for renormalisable theories 
or for nonrenormalisable theories up to a finite order of perturbation 
theory. Convergence theorems for infinite series of Feynman amplitudes 
with increasing singularities--as they appear in non-polynomial Lagrangian 
theories already in the first order of perturbation theory--are not proven 
hitherto. Our investigations supply some information for this problem. Let 
us recall that we have shown an infinite power series g(g) to converge in 
momentum space only for those test functions which decrease in the energy 
variable like exp (-alPoll/=). There is no possibility to define X at the point 
x, which would correspond to the limit if(p) -+ exp(ipx), i.e., to an oscillat- 
ing function. In the same way, one can expect the time-ordered, regularised 
vacuum expectation values of the power series to converge ol~ly if they- are 
smeared with appropriate test functions. Now, time-ordered products 
coincide--at least for localisable fields--in certain space-time regions with 
the non-ordered products. Thus, they can be smeared with test functions 
only, which satisfy the same (or stronger) conditions as in the non-ordered 
case, the actual convergence still remaining to be shown. 

Appendix 1 
Definition and Properties of the Spaces of Type S 

According to Gelfand & Schilow (1962) an infinitely differentiable 
function g(p), p = (PI,..-,P,), is said to be in the space 5e~,A(R"), where 

= (=b... ,~,) and A = (At,. . . ,A,),  if and only if 

IP~ Dqg,(P)I: = ~ ...p~,~~(p).pO~+"'+~.... 'P, i 

< c~,...~.,~,...~, x (A, + 83 ~, ' '  .(A. + ~.)k,k~'~' " " k ,  ~"~" 

= :C,,8(A + 3)~ (AI.1) 

is valid for all k and q and arbitrary 6 > O, the constant C~, ~ depending 
on g.'~ (AI.1) is equivalent to 

IDqg(p)l ~< Bq, a f i  exp (-a~(~i)[Pill~a9 a,(Sl) = c~,/e(A, + 3,) 1/~ 
l=1 

(A1.2) 
This implies the existence of the countable set of norms 

ligilI' ~: = s-ap f i  exp [a,(1 -- I/si)IP~l ~/~' ]lDqg(p)l 
q<~s 1=1 

where a~ = a~(0). By means of this system of norms one introduces the 
topology for countable normed vector spaces in the standard way. A 

t The spaces Sa~.a are used for the momentum space representation. 
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sequence g, ~ ~9~ a converges to zero in this topology if and only if all 
derivatives Dqg.(p) tend to zero uniformly in every finite interval and if 
the sequence of norms IIg~II~' A is bounded for each fixed s. 

For  AI < A2 holds ~9~ A1 = ~ga~, A2, and one denotes the inductive limit 
by 

~9~: = U ~P~, a (A1.3) 
A 

A sequence g, s ~ga~, converges to zero if and only if all g.  are elements of  
a fixed space Aa~, a and tend to zero in the topology of ~9~ a. 

The set of  all linear, continuous functionals on A'~, a resp. ~9~ is denoted 
by ~9 ~' ~, a resp. ~ ' .  An important property of these dual spaces is their 
completeness: Let T, be a sequence of functionals in ~'~, A resp. ,9~ I f  
we show convergence for all numerical sequences T,(g), g varying in the 
corresponding test function space, then the limits T(g) define a linear, 
continuous functional. 

Via Fourier transformation 

= (~--1 g)(x) = (2~) -~/2 f exp (-ipx)g(p)d"p g(x) 

we obtain the spaces 

~9~, a = o~-1 oq'~,, A, 5r ~' = o~ - 1 , 9 ~  (A1.4) 

An infinitely differentiable function g(x) belongs to 5 r a if  and only if 

[x k Dag(x)l < Ck, ~(a + 3)qqq~ (A1.5) 

For 0 < e I < ~2 < oo we have the following relations 

~ ' = ~ 0  ' ~ ' ~ ,  ~ ~'~2 ~ 
and 

.Z '  = A Q~ ~ A ' ~ ' '  ~ ~ '  ~ A '~ 

I t  should be noted that the union U ~9~ is smaller than ~9 ~. ~ contains 

test functions of  compact suppor t if and only if 0~ > 1. 
Positive definiteness in ~9 ~ '  and positivity in oc~ ' are defined and con- 

nected by a generalised Bochner-Schwartz theorem in the same way as in 
6~", and provide no additional difficulties (Gelfand & Wilenkin, 1964). I t  
is therefore somewhat misleading to say that the positive-definiteness 
condition in the Wightman axioms excludes essential singularities. 

We investigate now the problem of how to pass to difference variables 
in the case of a translation invariant functional in ~ ' ,  and for this purpose 
introduce the following mappings in the test function spaces. 

(Uo~ g )  ( x l  . . . .  , x . ) :  = g ( x l  - x 2  . . . .  , x . _ l  - x . ,  x . )  

Evidently, gol  = Ulo 1, 
6 
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Lemma A1 
O-1o and Uol map the spaces ~9 ~ ~- - (~ , . . . ,  ~) into themselves. 

Proof." We know that Ulo and Uol map ~9 ~ into 5:. Thus we have only to 
show that the estimate (A1.5) for g implies the same relation for Ulog and 
Uxog, the constant A possibly having another value. By successive dif- 
ferentiation we obtain 

[~D~(V~og)(~)] ~k ~ ~ ql! q.! 
q l  . . . . . . .  X = v l n +  �9 . . + v n n = q n  P l  I ! l : l n !  �9 . , p n n !  

av,+'"+~n I 
• OXtq.. " Oxg. g(Xl . . . . .  Xn) I n x:.Z~.l 

l = J  

where/~j = ~ = j  vji and ~ = i / * j  = ~,"-=x qt. We now apply (A1.5) to g, and 
observe that 

(" q t )  ~ tz~ . . . .  I~"~< \~=~ q~J"=' < t=l~expL~n+l-i:q'~Jq/~ (A1.7) 

for arbitrary ~ ~> 0, if the numbers q~ are sufficiently large. That gives the 
desired inequality 

t~k Dq(Ulog)(~)] < CkA~q qc* 

where fit =/(H~.=l A3exp [(n + 1 - l)~], the At denoting the constants of 
(Al.5) which correspond to g(x). [Since we are working in 5 := = U 5 :~' A, 

A 
we have dropped the ~, which appears in (A1.5)]. An analogous estimation 
holds for Uol g. 

Remark: The mappings U,0 and U 0 1  do not leave the spaces 5 :=' A invariant. 

Theorem A 1 
There is a one-to-one, continuous mapping which associates a functional 

Td E~9~ "-l) with each translation invariant functional T~oO~ 
[This is a modification of a statement of Streater & Wightman (1964) for 
translation invariant functionals in 5:'.] 

Proof: Let us denote by Q k a translation in the kth variable about a, and 
by Q~ a translation in all variables simultaneously. Suppose T ~ 5:~'(R ") 
and translation invariant in all variables. Then 

(Q n Ulo T) (g ) = T( Uol Q~-~g) = T(Q_~ Uox g) 
= (Qa T) (W0, g) = (Wl0 T) (g) 

i.e. U~oT is constant in the nth variable, and thus O/Oxn(UIoT)=O. A 
further mapping which reduces the number of variables is defined by 

(U2i T)(h): = T(h | e) 
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where h ~ 5P~(R "-1) and e ~ 5r so that j" e(~,) d~, = 1. U21T is in 
5P~'(R "-1) if T ~ ~9~'(R"). For a T2 ~ 5P~'(R "-l) we introduce 

(W, 2 
= . . . .  , ( f  

and remark that U12T2 e 5~ ' (R ' ) .  Let us then calculate 

= : T l ( g ( ~ ,  . . . . .  ~.))  

Because of 5 g(~:l,...,~,)d~, = 0 we have 

f (~ ,  . . . .  , ~:,) = f g(~:, . . . .  , ~ ' )  d~:.' 
- - r  

is in o ct' . Since 

f ao.-' _f ~JI 10~, "- lg <~CAq"-l(q"-l)(~ q, ,>2  

f i s  in 5~(R"). We now set T1 equal to Ulo T and obtain 

(U12 U21T1- T1)(g)= T1(~f ) =0 
since T1 is constant in ~:, if T is translation invariant. Thus we have shown 
that the mapping 

Ta = U21 Uxo T 

associates a functional Ta e Se~'(R "-1) with each translation invariant 
functional T e ~='(R") and has a unique inverse. The continuity of the 
mapping and its inverse results from general properties of mappings in 
dual spaces (cf., e.g., Schaefer, 1966). 

For functionals in 5 t'~', a > 1, the spectral condition implies a repre- 
sentation as boundary values of analytic functions, in analogy to the case 
of the tempered distributions (Streater & Wightman, 1964). In order to 
show this we introduce, besides the Fourier transformation for functionals, 

r (g )  = (~-- '  2~)(g) = ?(o~g) = ?(~) (A1.8) 

the Laplace transformation also 

(~.qo ~) (g): = {ow-l[exp (_p~/) ~]} (g) = ~[exp (-P'q)gl, p, r] e R (K+2)n 
(A1.9) 

Let V + be the forward cone in R (~+2)". We denote the direct product 
by 

F: = ~[ | v, + (AI.10) 
i~l 
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Theorem A 2 t  

Let  ~ St'~'(R~+2)"), ~ = (~, . . . ,o  0 with 0 ~  1, and s u p p ~ c / ' .  Then  the 
Laplace t ransform .C~an(T) exists for  all ~/~ _P and is equivalent to an 
holomorphic  function ~a(~)(~: _ i~/). Fo r  ~7 --> 0 w i t h i n / ' ,  ~e(:~)(r - i~7) 
converges to T = o ~ - ~  2F in the topology o f  S #~'. Let  K be a compact  subset 
o f / ' .  Then  there exists a polynomial  PK and a positive constant  C, so that  

l~"q~( T) (~ - i~)t ) I -<< PK(~:) exp [ Ct 1/"-~)] (A1.1 I) 

holds for  all r e R r all ~/e K, and for  t e (0,1). Fo r  ~ = 1 that  means 
that the singularity of  the left-hand side, which arises if t goes to zero, may  
be arbitrarily strong. 

Proof: (i) Let  y(p) be an infinitely differentiable auxiliary function, which 
is equal to one in a region containing F and which vanishes outside a larger 
region o f  bounded distance to / ' .  Hence ~ ( f f ) =  2~(yr The function 
exp(-p~l)y(p),  ~ ~ 1-', belongs to 5al. A~) as well as the sequence 

~ ( p )  = exp (-P~7) Y(P) g,,(P) 
r ~ S:.  I f  ~ ~ 0 in 5 :  t h e n / ~  ~ 0 in S/'~ and at the same time in all S/'=, 

/> 1. Thus we have shown that  exp(-pT/) ~(~)  = f [exp(-p 'q)yg]  exists for  
all g ~ 5 c and is continuous,  i.e. e x p ( - p ~ ) ~  ~ S: ' .  

(ii) We are now able to apply Theorem 2-6 o f  Streater & Wightman 
(1964) and deduce that  ~<('n(f) exists and is equivalent to a funct ion which 
is holomorphic  in R (~§ - i/" and satisfies 

Fo r  ~? -+ 0 i n / ' ,  Da{[exp(-p~?) - 1]y(p)) tends to zero uniformly inp ,  and 
if g e S#~, then g(p) [exp(-p~)  - 1 ]y(p) tends to zero in the topology of  S t ' .  
Thus  we have by the continuity of  2F 

lim (-La(2V) (~ - i~7) g(r d~: = lira ~[exp ( -p~)g(p)  y(p)] = T(g )  = T(g) 
r /- .O a "q-~O 

(iii) We now make use o f  the funct ion 

a(P, ~7, ~b)= exp(-p~7)[~=~ exp (-Pr/~)] -1 

in t roduced by Streater & Wightman (1964). ~/~ are to be chosen i n / "  in 
the way that  the convex hull H = {~7',~7' = ~J=~ tj~7,., ~ = a  t~ = l) has a 
non-empty  interior. As is shown by Jaffe (1968), a(p, ~7, ~1~) is infinitely often 
differentiable in p and ~7 and satisfies 

]D,ma(P, "1, ~1~)1 < C,~ exp (-dHpn) 

for  all ~7 ~ H, where d >  0 and , r  2 _ x:~+2), . ,  z /~ - -  / % i = 1  / : 1  ' 

"t Theorem A.2 is intimately connected with a more general theorem on Jaffe 0968) 
for strictly localisable functionals. We have adapted the statement for functionals in 
~ '  and shortened the proof considerably by requiting the stronger but physically 
motivated assumption supp ~ ~ -P. 
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Because Sen(~) is the Fourier  t ransform of  a rapidly decreasing distribu- 
tion, there holds for  the corresponding analytic function 

A~ (~: - i~/) = T(exp (-ip~ - pt~7)) 

and 

~q~(T) (~ - iT) = Tl~(exp (-ip~) a(p, t~ 7, t~j)) 
where 

{iPlt,0 < t < 1} is a bounded set of  functionals in ~9~ ' (Gelfand &Wilenkin,  
1964) and this implies the existence of  positive constants B, A and s, so 
that  

]Tlt(exp (-ip~) a(p, t~ 7, twj)) I < B [/exp (-ip~) a(p, t~7, t~j)llY' A 

Without  restricting in generality we suppose A = (A, . . . ,  A) and s = (s, . . . ,  s). 
Observing 

(K+2)n 
[pilZ/~' <~ 2(K+2)"[[p[I 1/~ 

i = l  

and 

we have 

I D q[exp (-ip~) a(p, t~7, t~/j)] I = ]0  4[exp (-ip~) a(tp, ~7, ~TJ)] ] 

< eq, n(~:) exp (-td[lpl[) 

Oc+2)n ] 
I[exp(-ipr I, tT]j)[]~ ' A  : supexp a(1 - 1/s) ~ Ip, I ~/= • 

~/~<s k i=l 

• [Dq[exp (-ip~) a(p, t~, t~j)] [ 

< P~, n(~) exp [b][p[I 1/~ - dtllP[I] 

< P,. n(~) exp [Ct I m-~)], for  ~ > 1 

Since ~7 is varying in H, there is a maximal polynomial  depending on H. 
Each compact  subset K of  r ' ,  however, can be enclosed in an H c / ' .  Thus 
we have finally 

[A~ (~: - its)[ -<< PK(~) exp [Ct l/~ 

By means of  Theorem A2, most  results of  the general quantum field 
theory (Streater & Wightman,  1964; Jost, 1965) can be obtained also for  
fields in 5 ~ ~ > 1. The case ~ = ! requires  some modifications, but  
localisability can be defined in various ways (Martineau,  1963; Khoruzhij ,  
1966; Constantinescu, 1969). Equat ion (AI.1 I) characterises the singular 
behaviour  of  the vacuum expectation values at the light-cone. 
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Appendix 2 
Power Series in Two Dimensions 

For  x = 0 the integral (2.3) reads 

'p.. ~1," \ - L  .oj p O=(pl2 + I(r,L) m 2 )  l / 2  

Jo t= l  pl~ 

The rules for  the existence of  multiple integrals (cf., e.g., Weinberg, 1960) 
show that  I(r,L) is finite for  each L > 0. Thus L must  not  necessarily depend 
on r. Because of(pz / + mZ) 1/2 >1 2-1/2(pt + m) 

f ~f( )-Lf]~_~ dp' I(r,L) <~ 2 (L+r)/2 " ' "  ~ (Pt + m) 
o o ~=~ _ p , + m  

= 2tL+r)/2 "" " trL h - h-I tl 
r m  2 m m 1 = 2  

where we have set tk = ~f= 1 (P~ + m), 1 ~ k ~ r. Taking into account  

t 2 - m  

f dq ~< 1 l o g t ,  
(t2 -- t l ) t l  m m 

m 

t l + l - m  

f dtt lo tr 
h+l - t~---1 < g in'  

lm 

we obtain 
co 

I(r,L) < 2tt'+r)/2m -1 f t~-Llogt~-l) tr dt~ 
m 

rm 

2 < l < r - 1  

L+I" ' "  ' 
= o~=o -(~ ~ l~Z ~ !  logr-i-P r, L > I  

Replacing the sum by r times the maximal member  we have 

I(r,L) < C2 ~/2 m-L(L -- 1) -~ r! 

for  large r. Supposing 

I Po L g,(P) gz(P) [ ~< H(L) 

we derive an estimate for  the two-point  function (2.1) 

[3qPt2)(gi,g2) ] < C ~ [d,12(2~r)-'2rl2g(L)m-Z(L- 1) -~ (A2.1) 
r = 0  
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Thus we conclude that there are already convergent two point functions, 
if the test functions decrease faster than po L/E, L > 1. Let us introduce the 
symbol j ~ r  for the set of all functions ~ satisfying 

]poLg(p)l < C, L > A 

og(" a is a dense subspace of ~1/~. (A2.1) shows that sufficient for the existence 
of ~c2)(gl,gz) for all gl/2 ~ Jg'a, ;~ > �89 is the condition 

Idr[ ~< M(A) r, r > r0 (A2.2) 

where M(A) is isoton in A (more precisely M(A)= [21/2~(2,~ - 1)]1/2). 

Equation (A2.2) is equivalent to p{dr) = 1 and ~{d~} = M [cf. (2.9)]. If  the 
test functions are taken out of 3 a, A may be chosen arbitrarily large, but 
finite; i.e., sufficient for convergence in ~ '  is p{dr) = 1 and ~{dr} is finite. 
This is Jaffe's condition (Jaffe, 1965a). 

If  we restrict the test functions ~ to the smaller spaces ~9~, 0 < 0~ < oo, 
we have H ( L ) < .  C A L L  L~ (A1.1), (A1.3). We can diminish the factors 
beside ]dr [2 in formula (A2.1), if we let L depend on r. An appropriate choice 
is 

L(r )  = ),r, ~, > 0 

The aforementioned factors now decrease like r (y=-I), y arbitrarily small, 
greater zero. The sufficiency condition reads 

Id,[ < r *' , 3 < � 8 9  r > r o  
o r  

p(dr) < 2 

For ~l/Z ~ ~ ,  i.e., ~ =0 ,  the factors beside It/,[ 2 decrease arbitrarily 
quickly and there is no condition to be imposed on the series-coefficients 
dr. 

Analogously to Section 3, one can demonstrate that the stated conditions 
for the two-point function imply existence for the n-point functions. 

We summarise the above results in the position space representation, 
introducing the spaces jg-a = o~ J'Ca. 

Theorem A3 

Sufficient for the convergence of x (g )  = ~,;~ (dr/r !):~':(g) in two dimen- 
sions for all test functions in 

the space 

X "~, ~ > � 8 9  

~ ( ~  = ~)  

~ 0  = 

is the condition 

p{d,} = 1, ~(dr} = M O ) .  

p{dr) = 1, ~(dr) < oo. 

p{dr} < 2. 

d, is an arbitrary sequence. 
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The table of  Theorem A3 shows that the spaces S ~  are not convenient 
for infinite series of  increasing logarithmic singularities. All spaces 5 g~', 
0 < ~ < ~,  are comprised in one condition which itself is, in higher space 
dimensions, the condition for localisability. 

F rom Theorem A3, statements on the singularities on the light-cone and 
on the growth of the spectral functions can be derived. The spaces Sr "a may 
be of use for a detailed discussion of the Thirring model. There, M(~) is 
proportional  to the coupling constant. 

Appendix 3 

On the Precision of Condition 

In order to investigate the precision of condition c~ (cf. Theorem 1) the 
two-point function is smeared with a special function gs. We now supple- 
ment the estimate leading from the last inequality before (2.12) to (2.12). 

r 

Ar(g~,gs)>>-CiCf f ""fexp[-a(z=~Pfl)~/~]~=~ ~pO 

~> C1 C f  " .  exp - a  pfl (p0  _ m)~-l dpt0, 
m m _ 1=1 1=2 

K>~I 

As in Section 2, the constants C1, C2 may be of different value in different 
lines. Passing to the variables tk = ~f=l p,0, 1 < k < r gives 

~> " "  exp [-at~/~] 
r m  ( r - l )  m m 

• ~-[ ( t , -  tt-I - m) ~-I (h - m) ~-I h dfi 
l = 2  1 = 2  

Let us introduce the constants e > 0 and 8, so that m/m + e < 8 < 1. Then 
the inequality l(m + E) < h implies 

l - ~  
l t t  < h - -  m 

For  the h-1 satisfying 

holds 

l - -3  
( l - -  1)(m + E) ~ tl_ 1 ~ - - T -  h 

tl -- m ~> t1(3 -- m/m + a) 

t, -- h-l -- m >~ (h/l) (3 -- m/m + ~) 
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D e n o t i n g  ~ - m/m + E = / ~  we o b t a i n  

[ ( r - -8) / r ] t  r [(2--t~)/2]t 2 

Ar~cIC2rr'-(K-I)[ zOc-l)r f f "'" f 
r ( m + 6 )  (r-- l ) (m+~)  m+E 
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Obse rv ing  

[(z-G)/z3z z 

f 
( l - l ) ( m + e )  

• exp [-at) /~ ' ]  ]~][ t~- ldt ,  
l = l  

(L?).-., 1 ~(/--1) 0c--I A~' ~ 

t~ l-l)~ I I -  1 \(l-l)~ ) 
= - - / - -  /> exp [ -K(r  - 1)] 

a n d  pass ing  to the  var iab le  s =a t r  one  is led to (2.12) 

gD > c, c2"(r a 

I = 2 , . . . ,  r 

exp (--s) s ~ ds / r  1 

a[r(m+E) ] 1 I~ 
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